34,871 research outputs found

    Global well-posedness for the Gross-Pitaevskii equation with an angular momentum rotational term in three dimensions

    Full text link
    In this paper, we establish the global well-posedness of the Cauchy problem for the Gross-Pitaevskii equation with an angular momentum rotational term in which the angular velocity is equal to the isotropic trapping frequency in the space \Real^3.Comment: 11 page

    Probing Extragalactic Dust through Nearby Gamma-ray Burst Afterglows

    Get PDF
    doi: 10.1088/0004-637X/710/1/648The quantities and wavelength dependencies of the dust extinction along the lines of sight toward 33 nearby gamma-ray bursts (GRBs) with redshifts z < 2 are derived from fitting their afterglow spectral energy distributions. Unlike previous studies which often assume a specific extinction law like that of the Milky Way (MW) and the Large and Small Magellanic Clouds (LMC/SMC), our approach—we call it the "Drude" approach—is more flexible in determining the true wavelength dependence of the extinction (while the shape of the extinction curve inferred from that relying on a priori assumption of a template extinction law is, of course, fixed). The extinction curves deduced from the Drude approach display a wide diversity of shapes, ranging from relatively flat curves to curves which are featureless and steeply rise toward the far-ultraviolet, and from curves just like that of the MW, LMC, and SMC to curves resembling that of the MW and LMC but lacking the 2175 Å bump. The visual extinction AV derived from the Drude approach is generally larger by a factor of ~2-5 than that inferred by assuming a SMC-type template extinction law. Consistent with previous studies, the extinction-to-gas ratio is mostly smaller than that of the MW, and does not seem to correlate with the shape of the extinction curve. It is shown that the standard silicate-graphite interstellar grain model closely reproduces the extinction curves of all 33 GRBs host galaxies. For these 33 bursts at z < 2, we find no evidence for the evolution of the dust extinction, dust sizes, and relative abundances of silicate to graphite on redshifts.We are supported in part by a NASA/Swift Theory Program, a NASA/Chandra Theory Program, and the NSFC Outstanding Oversea Young Scholarship

    Magnetic Soliton and Soliton Collisions of Spinor Bose-Einstein Condensates in an Optical Lattice

    Full text link
    We study the magnetic soliton dynamics of spinor Bose-Einstein condensates in an optical lattice which results in an effective Hamiltonian of anisotropic pseudospin chain. A modified Landau-Lifshitz equation is derived and exact magnetic soliton solutions are obtained analytically. Our results show that the time-oscillation of the soliton size can be controlled in practical experiment by adjusting of the light-induced dipole-dipole interaction. Moreover, the elastic collision of two solitons is investigated.Comment: 16 pages, 5 figure

    An adaptive dwell time scheduling model for phased array radar based on three-way decision

    Get PDF
    Real-time resource allocation is crucial for phased array radars to undertake multi-task with limited resources such as in the situation of multi-target tracking, in which targets need to be prioritized so that resources can be allocated accordingly and effectively. In this paper, a three-way decision-based model is proposed for adaptive scheduling of phased radar dwell time. Using the model, the threat posed by a target is measured by an evaluation function, and therefore, a target is assigned to one of the three possible decision regions, i.e., positive region, negative region, and boundary region. A different region has a various priority in terms of resource demand, and as such, a different radar resource allocation decision is applied to each region to satisfy different tracking accuracy of multi-target. In addition, the dwell time scheduling model can be further optimized by implementing a strategy for determining a proper threshold of three-way decision making to optimize the thresholds adaptively in real-time. The advantages and the performance of the proposed model has been verified by experimental simulations with comparison to the traditional two-way decision model and the three-way decision model without threshold optimization. The experiential results have demonstrated that the performance of the proposed model has a certain advantage in detecting high threat targets. 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works

    Intelligent Aircraft Maneuvering Decision Based on CNN

    Get PDF
    © 2019 Association for Computing Machinery. Aiming at the maneuvering decision of aircraft in air combat, an intelligent maneuvering decision model based on convolutional neural network(CNN) is proposed in this paper. Firstly, the situation data, maneuvering decision variables and evaluation indexs are given, and a CNN model that can realize intelligent maneuvering decision is established. Then, according to the evaluation indexes, the structure and parameters of the CNN model are adjusted through the simulation experiments to improve the accuracy and robustness of the maneuvering decision. After that, the validity of the intelligent maneuvering decision model proposed in this paper is verified through comparative experiments that the CNN model can make stable maneuvering decisions with high accuracy. Finally, the flight path in an air combat process is presented

    On Dust Extinction of Gamma-ray Burst Host Galaxies

    Get PDF
    Although it is well recognized that gamma-ray burst (GRB) afterglows are obscured and reddened by dust in their host galaxies, the wavelength-dependence and quantity of dust extinction are still poorly known. Current studies on this mostly rely on fitting the afterglow spectral energy distributions (SEDs) with template extinction models. The inferred extinction (both quantity and wavelength-dependence) and dust-to-gas ratios are often in disagreement with that obtained from dust depletion and X-ray spectroscopy studies. We argue that this discrepancy could result from the prior assumption of a template extinction law. We propose an analytical formula to approximate the GRB host extinction law. With the template extinction laws self-contained, and the capability of revealing extinction laws differing from the conventional ones, it is shown that this is a powerful approach in modeling the afterglow SEDs to derive GRB host extinction.Comment: 9 pages, 4 figures; The Astrophysical Journal, in press (2008 Oct 1 issue
    • …
    corecore